
2522 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

A Machine-Learning Architecture for
Sensor Fault Detection, Isolation, and

Accommodation in Digital Twins
Hossein Darvishi , Graduate Student Member, IEEE, Domenico Ciuonzo , Senior Member, IEEE,

and Pierluigi Salvo Rossi , Senior Member, IEEE

Abstract—Sensor technologies empower Industry 4.0 by
enabling integration of in-field and real-time raw data into
digital twins (DTs). However, sensors might be unreliable
due to inherent issues and/or environmental conditions.
This article aims at detecting anomalies instantaneously in
measurements from sensors, identifying the faulty ones and
accommodating them with appropriate estimated data, thus
paving the way to reliable DTs. More specifically, a real-
time general machine-learning-based architecture for sensor
validation is proposed, built upon a series of neural-network
estimators and a classifier. Estimators correspond to virtual
sensors of all unreliable sensors (to reconstruct normal
behavior and replace the isolated faulty sensor within the
system), whereas the classifier is used for detection and
isolation tasks. A comprehensive statistical analysis on three
different real-world datasets is conducted and the performance of the proposed architecture is validated under hard and
soft synthetically generated faults.

Index Terms— Digital twin (DT), fault diagnosis, machine learning, neural networks (NNs), sensor validation.

I. INTRODUCTION

D IGITAL twins (DTs) have recently emerged in several
industrial applications and exploit the Internet of Things

(IoT) technology [1]. More specifically, most environments
have been pervaded by the extensive use of spatially distrib-

Manuscript received 7 October 2022; revised 18 November 2022;
accepted 5 December 2022. Date of publication 13 December 2022; date
of current version 31 January 2023. This work was supported in part by
the Research Council of Norway through the SIGNIFY Project within the
IKTPLUSS Framework under Grant 311902. An earlier version of this
paper was presented at the IEEE International Conference on Network-
ing, Sensing and Control (ICNSC) 2021 [DOI: 10.1109/ICNSC52481.
2021.9702175]. The associate editor coordinating the review of
this article and approving it for publication was Prof. Weihua Li.
(Corresponding author: Hossein Darvishi.)

Hossein Darvishi is with the Department of Electronic Systems,
Norwegian University of Science and Technology, 7491 Trondheim,
Norway, and also with the Signal Processing Laboratory (LTS4),
École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland (e-mail: hossein.darvishi@ntnu.no).

Domenico Ciuonzo is with the Department of Electrical Engineering
and Information Technologies (DIETI), University of Naples “Federico II,”
80125 Naples, Italy (e-mail: domenico.ciuonzo@unina.it).

Pierluigi Salvo Rossi is with the Department of Electronic Systems,
Norwegian University of Science and Technology, 7491 Trondheim,
Norway, and also with the Department of Gas Technology, SINTEF
Energy Research, 7491 Trondheim, Norway (e-mail: salvorossi@
ieee.org).

Digital Object Identifier 10.1109/JSEN.2022.3227713

uted sensors, generating enormous amount of heterogeneous
data over time, which requires advanced integrated solutions
involving sensing, communication, and processing [2], [3], [4].
DTs represent one of the main products for building advanced
analytics over such data and extract relevant information
for prediction and effective control. DTs have been widely
employed in various sectors such as industry [5], health
care [6], and smart cities [7], [8], where their capabilities to
visualize and treat with a perpetual stream of real-time sensor
data is enabling new opportunities. Leveraging sensor data
enables DTs to model system dynamics effectively for remote
monitoring and controlling, for safety and risk analysis, and
for maintenance purposes. Since DTs rely on accurate sensor
data, system performance may be affected severely by sensor
failures. Sources of sensor faults are commonly found in the
following.

1) Hardware and Inherited Limitations: Sensors are
electronic components and can collect inaccurate
measurements or stop working without any indication
due to low production quality, calibration issues,
low battery level, end of life span, and poor
connections [9].

2) Harsh environment: In real-world scenarios, sensors
can be deployed in inaccessible and unattended

1558-1748 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2102-9801
https://orcid.org/0000-0002-6230-2958
https://orcid.org/0000-0001-6834-8482

DARVISHI et al.: MACHINE-LEARNING ARCHITECTURE FOR SFDIA IN DTs 2523

Fig. 1. Types of sensor faults. (a) Bias fault. (b) Drift fault. (c) Noise fault.
(d) Freeze fault.

environments with possibility of unlikely situations,
which would hinder sensors’ performance [10].

3) Malicious Attacks: Faulty data can be injected by an
attacker into a vulnerable system [11], [12].

A fault in a system refers to a complete (or partial)
malfunction and manifests over a permanent (or transient) time
span. As shown in Fig. 1, the most common types of sensor
faults in a sensor network are defined (a detailed discussion
of sensor faults is found in [13] and [14]. Depending on
the characteristics of sensor data, faults can be classified as
follows.

1) Bias Fault: Also known as offset fault, the deviation
from nominal values is given by an additive constant
bias.

2) Drift Fault: Sensor readings drift with a small slope from
nominal values (drift faults are more subtle since they
appear gradually over time and their effect is not very
apparent).

3) Noise Fault: An increased noise level in sensor readings
(when noise power is much larger than usual, it is an
indication of sensor malfunctioning).

4) Freeze Fault: Also known as stuck-at fault, the sensor
readings stuck at a constant value (i.e., the variance of
the readings becomes zero).

The impact of sensor faults would affect the stability,
reliability, and accuracy of the system depending on the
specific application. Hence, to fully utilize the expected
properties of the DT, it is essential to continuously evaluate
and amend sensor data. From this perspective, prompt sensor
fault detection, isolation, and accommodation (SFDIA) is
one key issue for deploying DTs while assuring reliable
performance. SFDIA indeed consists of three parts:

1) fault detection, i.e., determining sensor fault(s) within
the system’s sensor network;

2) fault isolation, i.e., identifying specific faulty sensors and
blocking their measurement feeding to DT;

3) fault accommodation, i.e., feeding DT with some other
replaced trustworthy data.

In what follows, related literature is reviewed by focusing
on recent progress on sensor fault diagnosis and SFDIA
approaches. It is worth highlighting that the following
discussion leaves out the (huge) corpus of literature dealing
with soft/virtual sensor design (see, for instance, the excellent
survey [15]). Indeed, it should be noted that the latter field
is out of the scope of this article, as soft/virtual sensors
are usually meant to provide predictions only for analyzing,
monitoring, and/or controlling purposes (corresponding to
the first layer of the proposed SFDIA architecture). Also,
we emphasize that this work focuses on sensor faults only, i.e.,
the monitored physical process does not exhibit any anomaly,
while the measurement data do (e.g., errors in data acquisition
and/or communication). Process fault detection and related
analysis is beyond the scope of this work.

A. Related Work
In the last years, the main advancements in fault diagnosis

technology have relied on the milestone concept of redun-
dancy, which embraces a wide spectrum of design solutions,
e.g., redundancy can be accomplished by either hardware
or analytical schemes. Within the class of hardware-based
approaches (also referred to as physical-based approaches),
multiple identical sensors (i.e., sensing the same physical
parameter) along with a voting scheme (or more sophisticated
techniques, see [16]) are employed to detect, isolate, and
accommodate sensor failures [17], [18], [19]. If the difference
(namely, the residual signal) between the measured signal of
a sensor and each other sensor in the set is considerably
high, the aforementioned sensor is declared faulty and its
data are replaced with those from the remaining (identical)
sensors. For instance, the aforementioned assumptions apply
to the case of homogeneous wireless sensor networks (WSNs),
where neighboring nodes are assumed to measure roughly
the same parameter [16]. Conventional physical-redundancy
approaches, however, cannot handle cases with simultaneous
failures of identical sensors, as they do not capitalize the
statistical dependence of measurements originating from other
sensor types [17], [18]. Moreover, in many applications, it is
impractical to implement these approaches due to space and/or
weight and/or cost constraints [18].

Accordingly, it is not surprising that methods adopting
analytical redundancy have gained increasing attention within
the research on SFDIA [20], [21], [22]. Unlike physical
redundancy, the latter approaches exploit correlations and
functional relationships within the system instead of intro-
ducing additional (redundant) hardware. Still, it is worth
highlighting that the above two philosophies are not mutually
exclusive and hybrid approaches can be pursued toward
the sophisticated design of fault-tolerant DTs. Analytical
redundancy can be usually implemented by either model-based
or data-driven techniques.

Model-based SFDIAs have been mostly investigated in the
context of power systems [23], e.g., using electrical dynamics
equations [20] or Luenberger observers [24]. Some other
methods have focused on the detection and accommodation
of proportional-type faults in nonlinear systems [25], [26].
Unfortunately, those methods (a) usually result in high

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

2524 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

complexity, (b) require an explicit, application-dependent,
formulation of the analytical redundancy relationship among
sensors, and (c) are seldom able to handle multiple sensor
faults simultaneously. On the contrary, data-driven approaches
relying on historical data have recently received large interest,
starting from simpler methods (e.g., autoregressive models
with exogenous inputs (ARX) [27]) to more complicated
(nonlinear) learning approaches (e.g., random forest (RF) [28],
support vector machines (SVMs) [29], [30], and neural
networks (NNs) [31], [32]). Indeed, data-driven techniques do
not require exact knowledge of the mathematical model for
sensor fault diagnosis.

Specifically, SVM-based classification was one of the
relevant attempts to detect sensor faults in WSNs, in both
batch [29] and online forms [30], which showed relatively
small computational costs, but limited performance. Succes-
sive works [33], [34] have also employed the SVM approach
to allow both detection and identification of faults: a binary
classifier was trained from the residuals of each sensor.
Specifically, in the former case [33], the residual signals
were generated by comparing the true measurements with a
single (global) observer designed by including fault models.
Conversely, in the latter case [34], a residual was obtained
from each (correlated) sensor pair via an ARX model, thus
providing multiple classification outputs for a given sensor,
and then aggregated at a higher level.

A second important class of approaches for SFDIA relies
on the well-known autoencoder (AE) NN [12], [21], [35],
[36]. Indeed, the AE is an unsupervised learning technique
capable of learning and extracting hidden representations from
raw data and it is thus suited for fault detection. Hence,
once trained, the AE can provide a reconstructed estimate
of the sensors’ measurements, thus allowing straightforward
computation of residuals (i.e., the difference between inputs
and outputs of the AE). Specifically, an AE-based (aided by
exogenous inputs) sensor validation scheme for a heating,
ventilation, and air conditioning system was proposed in
NNs [36]. Detection and identification are simply performed
by comparing overall and per-sensor residuals to a given
threshold. A similar AE-based SFDIA method is presented
in [21] for an air quality (AQ) controlling system, with
identification scheme performed via a more involved sensor
validity index. In both works [21], [36], accommodation is
simply performed by using the AE output associated with the
sensor(s) declared as faulty. Differently, a more sophisticated
proposal uses an additional denoising AE (a supervised
learning technique) to perform the accommodation task [12],
namely, to clean faulty data. Despite their simplicity, AE-
based SFDIA approaches can suffer, however, from degraded
performance under weak faults, as the latter type of faults does
not considerably impact correlations in data.

Multilayer perceptron (MLP) NNs (including variants) have
also been proved to perform satisfactorily for a number of
relevant sensor fault diagnosis tasks [22], [37], [38], including
heavy-duty diesel engines’ and aircraft, based on a sensor-
centric viewpoint. Indeed, in all the aforementioned works,
one MLP estimator per each sensor is designed (solely based
on other sensors’ measurements) and detection/identification is

based on the evaluation of the residual vector. Accommodation
is then performed by using the estimator(s) associated with the
sensors declared as faulty. Specifically, the proposal in [37]
adopts fully connected cascade NNs (i.e., MLPs allowing
direct connections across different hidden layers) for the sensor
estimator design, while the proposal in [22] considers a hybrid
structure with a linear NN and resource allocation network
(a variant of well-known radial basis function NN) for the
same task. More recently, a plain MLP estimator (exploiting
the sole spatial correlation among sensors) has been proven
to provide reliable detection with low false-alarm rate as
well [38].

A different rationale is pursued in [31], where a single
deep belief network (a Bayesian type of NNs) has been
trained (in a supervised fashion) to detect a faulty condition,
whereas sensor identification is naively carried out based on
the maximum deviation from data mean value. Along the same
lines, a general approach is presented to detect and identify
sensor faults using either a single recurrent NN (RNN) or an
MLP [39] for predicting next-step measurements and compar-
ing with actual ones. A disentanglement regularization term
on the NN loss function is introduced to help the algorithm
coping with propagation of faults to nonfaulty sensors in the
identification stage. Unfortunately, the accommodation stage is
not considered in the above work. Interestingly, also a dynamic
Bayesian network has succeeded in sensor fault detection and
accommodation exploiting spatial and temporal correlations
in the context of intelligent connected vehicles [40]. Still, its
training difficulty (in terms of both parameter and structure
learning) appears limiting in large-scale sensor systems.

Recently, the sensor-centric viewpoint in [22], [37], and
[38] has further been exploited to devise a modular SFDIA
(M-SFDIA) method based on MLP NNs in [32] and [41],
with a focus on supporting DTs. The proposed structure
consists of a set of estimators (each associated with a
sensor) providing residual signals as well as replacements
(estimates) for faulty data, in that a supervised classifier is
trained to make detection and identification decisions upon
the residual signals by leveraging their (possibly nonlinear)
relationships. An experimental analysis on three real-
world datasets has demonstrated satisfactory performance of
M-SFDIA method. Although promising (from the estimators’
design viewpoint), M-SFDIA architecture does not completely
exploit the temporal correlations among sensors within the
monitored system.

B. Article’s Contribution
In view of the previous discussion, some proposals are

restricted to a given vertical domain (e.g., aircraft [37],
vehicle [34], or HVac system [36] monitoring), thus lacking
a general formulation. Second, part of the literature evaluates
the corresponding proposals on private (e.g., [39] and [40])
or simulated (e.g., [28], [36], and [37]) measurement data,
thus precluding reproducibility and convincing evaluation,
respectively. Third, a number of the discussed works evaluate
their proposals only on a single fault type (e.g., bias [21],
[39] or drift [22]). Equally important, some architectures
are only limited to fault detection [29], [30]. On the other

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

DARVISHI et al.: MACHINE-LEARNING ARCHITECTURE FOR SFDIA IN DTs 2525

hand, some recent proposals do not foresee all the three
tasks in their original formulation, e.g., the identification
and accommodation tasks in [12] and [39], respectively.
Still, even when all three tasks can be carried out, in some
cases, only spatial correlation [22], [36], [38] is used to
accommodate faulty measurements. Finally, some approaches
have a limited modularity [12], [21], [39]. Accordingly, the
main contributions of this article are summarized as follows.

1) A real-time and modular data-driven SFDIA architecture
is developed, fully exploring (i.e., learning) spatial and
temporal dependence in sensory data. The proposed
architecture relies on the novel use of a pair of
regressors for each sensor, performing estimation and
prediction operations. In the former case, each estimator
is leveraging readings from other sensors only to obtain
a “virtual measurement.” Conversely, each predictor
plays a complementary role (to the estimator) by using
only previous data from the sensor under consideration
to obtain an analogous virtual measurement. Hence,
their joint adoption enables the proposed architecture
to ultimately exploit spatiotemporal correlation within
the system, thus supporting nearly instantaneous fault
detection and isolation performance.

2) The dissimilarity measured by predictors (resp. estima-
tors) and measurements, referred to as residual signals,
is then used as the perfect candidate for designing a
reliable classifier able to perform both fault detection
(i.e., whether there is a fault in the whole sensor set)
and identification (i.e., which sensors are faulty).

3) The proposed approach employs MLP NNs for both
regression (estimation and prediction) and classification
modules to capture and process analytical redundancy
relations while keeping a reasonable complexity at the
operational stage. In the latter case, a multitask MLP
NN (i.e., each sensor condition is seen as a binary
classification task) is designed for detecting and (if any)
identifying multiple faulty sensors via a single NN.

4) Moreover, classifier decisions, residual signals, and
virtual measurements are exploited by a specifically
designed controller to make corrections on sensor model
inputs and improve the overall system performance
both for detection and isolation tasks. Specifically, in a
feedback loop, the controller is in charge of replacing
corrupted input data and, consequently, avoiding propa-
gation of faults throughout the architecture.

5) The performance of the proposed SFDIA architecture is
assessed on three real-world (public) datasets [42], [43],
[44], which are corrupted with (a) four relevant fault
types (bias, drift, noise, and freeze) and (b) different
levels of faults (with special emphasis on weak faults,
as they are more difficult to detect).

6) The proposal is compared with two state-of-the-art
machine-learning-based architectures [12], [41] from
both performance (in terms of detection delay and
probabilities of detection, false alarm, correct identi-
fication, and accommodation error) and computational
complexity (in terms of number of trainable parameters)
standpoints.

The present work extends earlier conference paper [45],
which (a) presented only an intermediate version of the
proposed novel architecture (no controller block), (b) reported
a significantly smaller experimental analysis (focusing only
on the WSN dataset [43]), (c) considered a smaller set of
baselines in the comparison, and (d) assessed the effectiveness
of the SFDIA approach only on bias faults.

The remainder of this article is structured as follows.
In Section II, the proposed data-driven SFDIA architecture is
presented and the functionalities of each block are illustrated.
Section III describes the configuration of the NNs and the
related training process; the description of the datasets and
the framework for fault generation are provided in Section IV.
Section V presents and discusses the numerical performance
of the proposed architecture in contrast with benchmarks from
the current literature. Finally, concluding remarks and future
directions of research are given in Section VI.

Notation: Lower case bold letters indicate vectors,
I N denotes the null column vector of length N , (·)T refers
to the transpose operator, ∈ is the set membership, and O(·)
denotes the Landau notation.

II. SENSOR FAULT DETECTION, ISOLATION,
AND ACCOMMODATION

The proposed method aims to exploit the full potential of
spatial and temporal correlation among sensors in a system.
Specifically, it is assumed that the sensors are divided into
two sets: 1) the set of unreliable sensors SU , containing
sensors that are vulnerable to faults, and 2) the set of reliable
sensors SR , which, depending on the working system, include
sensors whose flawless functionality can be guaranteed [41].
This (ideal) level of reliability could be associated with: a
meta-sensor modeling a group of identical sensors (enjoying
hardware redundancy), high-quality sensors, a proper design,
and safe working environment, a device being at the middle
of life span [46] or context measurement information, which
is assumed to have significantly higher reliability than the
considered networked sensor system. In a more general sense,
any reliable source of data correlated with the unreliable
sensors could be included in the set of reliable sensors. In the
following, without loss of generality, it is assumed that SU =
{1, . . . , NU } and SR = {NU + 1, . . . , N}, where NU and N
denote the number of unreliable sensors and the total number
of sensors, respectively. Also, for compactness, NR denotes
the cardinality of the reliable set SR (i.e., NR = N − NU).

A. Architectural Overview
The block diagram of the proposed SFDIA architecture

is shown in Fig. 2. It consists of five building blocks
(controller, estimators, predictors, residual calculator, and
classifier) arranged in four layers, whose function is explained
as follows. The first layer contains two parallel blocks, the
estimators’ block and the predictors’ block, each providing
a virtual measurement for all the unreliable sensors in the
system either regressed via other sensors’ observations (i.e.,
the estimator) or based only on previous measurements of
the same sensor under consideration (i.e., the predictor).

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

2526 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

Fig. 2. Block diagram of the proposed SFDIA architecture.

The second layer is responsible for the computation of a
discrepancy measure between the true and each calculated
virtual measurement, usually in the form of a function
of the residual signals. The third layer is fed with the
aforementioned discrepancy measures and is able to perform a
multidimensional classification to detect a faulty condition and
identify the corresponding faulty sensors. Finally, the fourth
layer controls the inputs of the blocks in the first layer in order
to preserve estimators’ and predictors’ accuracy, by avoiding
error propagation.

The present architecture improves over the one proposed
in [41] where the main novelty is the introduction of
the controller and the predictors. Despite the addition of
these two modules, it is worth remarking that the proposed
architecture retains the advantages of modularity and real-time
implementation. Indeed, regarding the former property, the
proposed approach allows the implementation of diversified
ML techniques for different modules and more flexible
deployment, also taking computational/hardware limitations
into account. Differently, regarding the latter property, each
of the proposed modules can be flawlessly implemented
in real time since they are all based on a sliding-window
implementation. Finally, given the adoption of MLP-based
solutions for the estimators/predictors (Section II-B) and the
classifier (Section II-D), the proposed implementation also
retains simplicity. The following details each of the four layers
constituting the proposed approach.

B. First Layer: Estimation and Prediction
The first layer aims to model the unreliable sensors within

the system and is based on two subsystems: 1) a bank of
estimators and 2) a bank of predictors.

As detailed in Fig. 3, the bank of estimators is composed
of NU estimators (each associated with an unreliable sensor),
each providing the estimation x̂s[n] of the measurement (at the
current time step n) from its corresponding unreliable sensor
s ∈ SU . Each estimator receives as input the vector x(s)
collecting all existing sensors’ readings (from current time
step n back to Le previous time steps using a sliding-window
mechanism) except the one from the sensor to be estimated
{SU ∪ SR − s}, i.e.,

x̂s[n] = f (Hv ,Nv)
s

(
x(s)[n], . . . , x(s) [n − Le]

)
(1)

Fig. 3. Diagram detailing the estimators’ and predictors’ blocks.

where f (Hv ,Nv)
s (·) denotes the function model of the

MLP-based estimator for the sth sensor, being Hv and Nv

the number of hidden layers and the number of neurons,
respectively. Previous time samples are fed into the estimators
in order to exploit the temporal correlation among the input
signals.

The bank of predictors operates a complementary approach.
Each of the NU predictors provides a prediction x̃s[n] of
the measurement (at the current time step n) from its
corresponding unreliable sensor s ∈ SU . Each predictor
receives as input the readings xs[·] of the sensor to be predicted
(from the previous time step n − 1 back to L p previous time
steps using a sliding-window mechanism), i.e.,

x̃s[n] = g(Hv ,Nv)
s

(
xs[n − 1], . . . , xs

[
n − L p

])
(2)

where g(Hv ,Nv)
s (·) denotes the function model of the

MLP-based predictor for the sth sensor, again being Hv and
Nv the number of hidden layers and the number of neurons,
respectively.

C. Second Layer: Residual Evaluation
The second layer computes the square of residual signals,

i.e., the difference of sensors reading with their respective
estimation or prediction values (see Fig. 4), namely

eE,s [n] = (
xs[n] − x̂s[n])2 (3)

eP,s[n] = (xs[n] − x̃s[n])2 (4)

for each unreliable sensor s ∈ SU . Residual signals are
used as input to the classifier in the third layer as they
contain effective information for fault classification. It is
worth noticing that the proposed SFDIA architecture enjoys
modularity and generality: thus, other discrepancy measures
[other than that used in (3) and (4)] may be adopted without
any substantial change in the subsequent layers.

D. Third Layer: Classification
An MLP classifier, meant to work in real time, is used for

fault detection and the identification of the faulty sensors, and

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

DARVISHI et al.: MACHINE-LEARNING ARCHITECTURE FOR SFDIA IN DTs 2527

Fig. 4. Diagram detailing the residual calculator block.

Fig. 5. Structure of the MLP-based classifier block.

its detailed structure is shown in Fig. 5. Denoting eU [n] =
(eE,1[n], . . . , eE,NU [n], eP,1[n], . . . , eP,NU [n])T, the residual
vector containing the residual signals of all NU sensors at time
step n, the input of the classifier is the collection of residual
vectors from Lc previous time steps up to current time step n,
namely, eU [n], . . . , eU [n − Lc]. Conversely, a decision vector
d[n] = (d1[n], d2[n], . . . , dNU [n])T represents the output of
the classifier and identifies which among the unreliable sensors
are suspected to be in failure, i.e.,

d[n] = h(Hc,Nc) (eU [n], . . . , eU [n − Lc]) (5)

where h(Hc,Nc)(·) denotes the function model of the
MLP-based classifier, being Hc and Nc are the number of
hidden layers and the number of neurons of the classifier,
respectively. More specifically, the sth entry of the decision
vector, i.e., ds[n] ∈ [0, 1], s = 1, . . . , NU , represents
a pseudo-probability for the sth unreliable sensor to be
faulty. Apparently, ds[n] = 1 (resp. ds[n] = 0) represents
the situation in which the system declares with maximum
confidence the sth sensor to be faulty (resp. fault-free). As a
consequence, a vector d[n] = 0NU indicates the healthy
operation of all the sensors within the system at time n.

Therefore, faulty sensors are identified via a threshold-
based logic for each of the components of the decision
vector. The considered threshold will be denoted γ in what
follows. Principally, here, faulty sensors are detected and
identified/isolated when the entries of the decision vector d[n]
exceed the threshold γ . Specifically, maxNU

s=1 ds[n] ≷ γ is used
for detection. Accordingly, for the identification task, the set
of identified faulty sensors (denoted with IU) is obtained as
IU � {s ∈ SU : ds[n] > γ }.

It is worth mentioning that, from an overall SFDIA system
perspective, the measurements from the sensors declared faulty
are replaced (i.e., accommodated) with their corresponding
estimates in order to preserve system utility.

E. Fourth Layer: Control
The role of the control block is to preserve the performance

of the proposed SFDIA method when faults occur. Referring
to Fig. 2, this block operates at the beginning of each time
step and controls inputs and outputs of both estimators and
predictors regarding the latest residual signals and the decision
vector d[n − 1].

The symbol φE,s (resp. φP,s) denotes the average residual
signal for the sth estimator (resp. predictor) computed with a
moving average over a window of size Lr starting from time
step n−1 while excluding the identified faulty time steps. The
signal φE,s (resp. φP,s) of the unreliable sensor s is used by the
controller as a metric to define the estimation (resp. prediction)
accuracy of the corresponding estimator (resp. predictor).

In the first step, after applying the proposed SFDIA scheme
at time step (n−1), the elements of the decision vector d[n−1]
larger than a predefined threshold υ identify faulty sensors for
the controller. Then, the following process will be conducted
at the beginning of each time step n. To keep the discussion
simple, we will generically refer to the sth sensor as the one
identified as faulty.

As for the predictor controlling scheme, if the estimator’s
average residual signal φE,s is smaller than a certain value
τ (i.e., the system tolerable level of deviation), the estimator
output x̂s[n − 1] replaces the respective sensor input xs[n − 1]
to the corresponding predictor. In other words, the predictor
in (2) will be then fed as

x̃s[n] = g(Hv ,Nv)
s

⎛
⎜⎝x̂s[n − 1]︸ ︷︷ ︸

replacement

, . . . , xs
[
n − L p

]⎞⎟⎠. (6)

This logic is intended to use only those estimates whose
quality is better than the faulty data within the sth predictor.

As for the estimator controlling scheme, if the predictor’s
average residual signal φP,s smaller than both the system
tolerable level of deviation τ and φE,s , the predictor output
x̃s[n] is obtained and replaces the respective sensor input xs[n]
(updates all estimators’ input vectors except x(s)[n]) to the
estimators. In other words, we have ∀s� ∈ S, s� �= s

x̂s�[n] = f (Hv ,Nv)
s�

⎛
⎜⎝ x̃(s�)[n]︸ ︷︷ ︸

replacement

, . . . , x(s�)[n − Le]
⎞
⎟⎠ (7)

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

2528 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

where the vector x̃(s�)[n] collects all existing sensors readings
except for s� and with sth reading being replaced by x̃s[n].
Otherwise, if φE,s is smaller than the system tolerable level of
deviation,1 the estimator output x̂s[n] is obtained and replaces
the respective sensor input xs[n] (updates all input vectors
except x(s)[n]) to the estimators. Specifically, ∀s� ∈ S, s� �= s

x̂s�[n] = f (Hv ,Nv)
s�

⎛
⎜⎝ x̂(s�)[n]︸ ︷︷ ︸

replacement

, . . . , x(s�)[n − Le]
⎞
⎟⎠ (8)

where the vector x̂(s�)[n] collects all existing sensors’ readings
except for s� and with sth reading being replaced by x̂s[n].
This logic is intended to replace the input faulty data with
estimates/predictions whose accuracy is better than the input
faulty data (i.e., x(s)[n]) to all estimators (except for the
corresponding sensor s estimator). We highlight that, in all
three cases, no architectural modification (i.e., varying input
size for the estimators and predictors) is required for the blocks
of the proposed SFDIA method.

Conversely, in the case of no-fault detected, this block
merely slides the window forward in time to update both φP,s

and φE,s by using the recent residual signals eU [n − 1].
A pseudocode of the controlling block process is given

in Algorithm 1. It is worth remarking that the substitution
of faulty inputs with either estimated or predicted values
maintains the estimators’ and predictors’ accuracy (by avoid-
ing error propagation) and results in better accommodation
performance as well as increased detection rate.

Algorithm 1 Controller
1: procedure CONTROLLER

2: Input: d, eU , and xs for all s ∈ SU ;
3: At starting of each time step n:
4: for s = 1 : NU do � Corresponds to s ∈ SU

5: if ds[n − 1] > υ then � Identified faulty
6: if φE,s < τ then
7: Feed x̂s[n − 1] instead of xs[n − 1] to the

prediction block as input;

8: if φP,s < φE,s and φP,s < τ then
9: Obtain x̃s[n] from Eq. (2);

10: Feed x̃s[n] instead of xs[n] to the estimation
block as input;

11: else if φE,s < τ then
12: Obtain x̂s[n] from Eq. (1);
13: Feed x̂s[n] instead of xs[n] to the estimation

block as input;

14: else � Identified healthy
15: Update φE,s , φP,s using eU [n − 1];

III. NNS CONFIGURATION

The MLP is a feedforward layered NN made up of an
input layer, an arbitrary number of hidden layers, and an

1In other words, the corresponding estimator is providing better accuracy
than the corresponding predictor, i.e., φE,s < φP,s and φE,s < τ .

output layer, where neurons are interconnected in the forward
direction from the input to the output layer [47]. The MLP
is a suitable NN for regression and classification tasks and
is capable to model arbitrary nonlinearities while exhibiting
fine generalization on unseen data [38], [41]. MLP NNs in the
proposed SFDIA architecture are trained using an optimization
algorithm [48].

A. Estimators and Predictors
Each MLP-based estimator has been implemented with

(N − 1) · (Le + 1) inputs, Hv hidden layers with Nv neurons
each, and a single output. Conversely, each MLP-based
predictor has been implemented with L p inputs, Hv hidden
layers with Nv neurons each, and a single output. For both
the estimators and predictors, the hyperbolic tangent has been
selected as the activation function for the hidden layers, while
the linear activation function has been selected for the output
layer.

Training was accomplished using the Nesterov-accelerated
adaptive moment estimation (Nadam) optimization algo-
rithm [49] over real-world datasets. The mean square error
(mse) loss function was considered as the relevant optimization
metric for both the estimators and the predictors. More
specifically, the mse loss for sth estimator and predictor,
respectively, is defined as

Les,s
(
φs

) = 1

w

w−1∑
j=0

(
x̂ j

s
(
φs

) − x j
s

)2
(9)

Lpr,s
(
ϕs

) = 1

w

w−1∑
j=0

(
x̃ j

s
(
ϕs

) − x j
s

)2
(10)

where w is the number of samples in each batch and φi
(resp. ϕi) represents the vector of trainable parameters of
the sth estimator (resp. predictor). Finally, x̂ j

s (resp. x̃ j
s) is

the network output associated with the sth estimator (resp.
predictor), while x j

s denotes the true measurement (i.e., the
labeled sample) of the sth sensor.

B. Classifier
The MLP-based classifier has been implemented with

2NU ·(Lc +1) inputs, Hc hidden layers with Nc neurons each,
and NU outputs. The hyperbolic tangent has been selected
as the activation function for the hidden layers, while a
logistic (i.e., sigmoid) activation function has been selected
for each node in the output layer. In order to accomplish both
detection and identification tasks, a loss capitalizing multitask
learning is employed for training the classifier. Specifically, a
weighted sum of the losses of the NU binary (fault/no-fault)
classification tasks associated with the unreliable sensors is
minimized, i.e.,

Lcl

(
θ shared, {θ s}NU

s=1

)
�

NU∑
s=1

λsLs (θ shared, θ s) . (11)

In (11), the weight λs indicates the preference level of the sth
task (i.e., detection of a fault at sth unreliable sensor). It is
worth noticing that the multitask objective function allows the

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

DARVISHI et al.: MACHINE-LEARNING ARCHITECTURE FOR SFDIA IN DTs 2529

proposed classifier to solve multiple learning tasks at once
(i.e., via a single NN). Accordingly, in the above expression,
θ shared represents the vector of shared parameters of the MLP
common to all the NU different tasks, whereas θ s indicates the
vector of parameters that are task-specific for the sth learning
task.

In this work, uniform weighting is adopted, i.e., λs = 1/NU

for s = 1, . . . , NU , and a binary cross-entropy (BCE) loss
function for all the NU binary tasks L1(·), . . . ,LNU (·). The
BCE loss for the sth task is formally defined as

Ls (θ shared, θ s)

= − 1

w

w−1∑
j=0

{
y j

s ln d j
s (θ shared, θ s)

+
(

1 − y j
s

)
ln

(
1 − d j

s (θ shared, θ s)
)}

(12)

where w is the number of samples in each batch.
Furthermore, d j

s is the entry of classifier output associated
with the sth sensor, while y j

s denotes (the 0/1 representation
of) the true fault status (i.e., the labeled sample) of the
sth sensor. The same optimization algorithm (i.e., Nadam)
as the estimators/predictors is employed for training the
aforementioned MLP-based classifier.

C. Summary of the Training Phase
The whole training process of the proposed SFDIA

architecture is summarized in Algorithm 2. In detail, the
estimators and predictors (Section III-A) are trained only with
healthy (fault-free) data, according to the inputs specified via
(1) and (2), respectively. A similar comment applies to the
associated validation set for estimators and predictors.

Conversely, the classifier block (Section III-B) is also
trained based on faulty training data, by including the
controller and residual evaluation blocks in an open-loop
fashion. Indeed, during the training process, the controller
is given the classifier label set (i.e., the binary-valued
vector pattern collecting true faulty/healthy condition for
all the sensors) as input, in the place of the classifier
decision vector. This is to avoid detrimental effects due to
training instability of the classifier. However, since perfect
identification provided by the label set may lead to overfitting,
25% of controller decisions are randomly dropped out to help
the classifier generalize better during the training process. The
corresponding validation set for the classifier block includes
faulty measurements as well.

IV. DATASETS AND FAULTS SETUP

A. Datasets Setup
For the sake of a complete evaluation, three real-world

datasets (similarly as in [41]) have been employed to assess the
proposed SFDIA architecture. Specifically, the AQ dataset [42]
includes readings from five chemical sensors (assumed to
be unreliable, namely, NU = 5) which are complemented
by measurements originating from humidity and temperature
sensors (assumed to be reliable, i.e., NR = 2). Such a sensor
system is aimed at pollution-level evaluation in an Italian

Algorithm 2 Training Process
1: procedure INITIALIZE

2: Preparing training set and create a falsified copy;
3: Random weights and biases for all networks;
4: Set initial value of all other parameters to zero;

5: procedure ESTIMATORS AND PREDICTORS

6: Input: healthy training set; � Fault free
7: while Epoch number < Max epoch or Validation loss

Not triggered do
8: for each epoch do
9: Calculate MSE;

10: Update weights and biases using Nadam optimiza-
tion;

11: Calculate validation loss;
12: procedure CLASSIFIER

13: Input: Falsified training set;
14: while Epoch number < Max epoch or Validation loss

Not triggered do
15: for each epoch do
16: Obtain x̂s x̃s for all s ∈ SU with respect to the

controller mechanism;
17: Calculate residual signals;
18: Feed residual signals to the classifier;
19: Calculate weighted BCE;
20: Update weights and biases using Nadam optimiza-

tion;
21: Calculate validation loss;

city. The second dataset is related to a WSN with four
unreliable sensors measuring indoor and outdoor humidity
and temperature [43]. Labeled anomalies injected into the
dataset were omitted and only the temperature readings of
the multihop section of dataset are considered as unreliable
readings (NU = 4 and NR = 0) for our analysis. The
last dataset includes multiple sensors on a permanent-magnet
synchronous motor (PMSM) [44], [50]. Among the collected
measurements,2 coolant temperature, voltage and current
(summation of q and d components), motor speed, and torque
are included in the unreliable set SU (thus, NU = 5), whereas
the stator yoke temperature is assumed to belong to the reliable
set SR (thus, NR = 1).

Before feeding the datasets to the proposed architecture,
sensors’ readings in each dataset are normalized using
min–max scaling on the training set to avoid polarization
during the learning process. Finally, the entire rows containing
missing values are ignored from the datasets. Table I
summarizes the datasets’ description.

B. Sensor Faults’ Modeling
The performance of the proposed SFDIA architecture is

evaluated under transient faults.
Also, with the aim of adapting and examining the proposed

architecture according to DTs’ needs, four different fault

2The readings were sampled with 1.5-s intervals and the first 55k readings
were picked after sampling.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

2530 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

TABLE I
DATASETS DESCRIPTION. THE RELIABLE SENSORS

IN EACH DATASET ARE HIGHLIGHTED IN ITALIC

types with varying severity levels were modeled, as detailed
hereinafter. It is worth highlighting that the practice of
modeling simulated faults superimposed to real data is
a common practice in the evaluation of SFDIA systems
(e.g., [12], [29], [39]), as real faulty measurements are
sporadic and very hard to obtain and simulated faults also
allow quantifying accommodation performance. This is also
to highlight the generality of the proposed architecture in
accommodating diversified faulty conditions.

1) Bias Faults: For each bias fault, a constant bias b injected
to the normal operation datasets for M consecutive samples
as follows:

xs,b[n] =
{

xs,h[n] + b, 0 ≤ n − m < M

xs,h[n], otherwise
(13)

where xs,h[n] and xs,b[n] are the healthy and possibly faulty
reading of sensor s ∈ SU , respectively, under bias fault.
Finally, m denotes the starting time instant of the fault.

2) Drift Faults: As for drift fault, an additive term drifts
to bias level b in M samples and remains for K samples
(M > K), namely

xs,d[n] =

⎧⎪⎪⎨
⎪⎪⎩

xs,h[n] + b (n − m+1)

M
, 0 ≤ n − m < M

xs,h[n] + b, M ≤ n − m < M+K

xs,h[n], otherwise
(14)

where xs,d[n] is the possibly faulty reading of sensor s ∈ SU

under drift-type faults.
3) Noise Faults: In the latter case, zero-mean additive

Gaussian noise w[n] ∼ N (0, c) is added to the sensor
measurement for M consecutive samples, i.e.,

xs,g[n] =
{

xs,h[n] + w[n], 0 ≤ n − m < M

xs,h[n], otherwise
(15)

where xs,g[n] is the possibly faulty reading of sensor s ∈ SU

under noise-type faults and c is the variance of the noise.
4) Freeze Faults: For freeze-type faults, sensor output stuck

at the previous reading for M consecutive samples as follows:

xs, f [n] =
{

xs,h[m − 1], 0 ≤ n − m < M

xs,h[n], otherwise
(16)

where xs, f [n] is the possibly faulty reading of sensor s ∈ SU

under freeze-type faults.

V. NUMERICAL RESULTS

The effectiveness of the proposed architecture for detection,
isolation, and accommodation of sensor faults has been
assessed by means of a comprehensive analysis conducted
on the three previously described real-world datasets.
Section V-A first details the considered system setup and
employed parameters, for the sake of reproducibility. Then, the
working principle of the two relevant SFDIA baselines used
for comparison is recalled (Section V-B). Finally, the SFDIA
performance is reported and discussed (Section V-C).

A. System Setup and Parameters
1) Training and Evaluation Setup: MLP NNs within the

proposed architecture were trained using the first 70% and
15% of samples of each dataset as train set and validation
set, respectively. The rest ending 15% of samples of each
dataset was used as the test set for performance evaluation.
A validation process based on the early stopping method [51]
was employed during the training phase to avoid overfitting:
the training process was stopped if the loss on the validation
set had not decreased for 20 consecutive epochs or if the
maximum number of epochs was reached.3

2) Hyperparameter Specification of the Proposed Approach:
As in [41], a similar configuration for the classifiers and the
estimators was considered. More specifically, estimators and
predictors with Hv = 1 hidden layer and Nv = 10 nodes per
hidden layer and Lv = L p = 10, along with a classifier with
Hc = 2 hidden layers and Nc = 15 nodes per hidden layer and
Lc = 10 were trained. Table II lists MLPs’ configurations and
corresponding hyperparameters of the proposed architecture.
In addition, the predefined thresholds τ and υ are set to
0.15 and 0.9 for the controller, respectively. The threshold
τ needs to be adjusted with respect to the system tolerable
level of deviation as well as the estimators/predictors accuracy,
whereas threshold υ is selected heuristically according to the
system performance on the validation set.

3) Random Generation of Synthetic Faults: The four types of
faults considered in this work are synthetically generated [12],
[29], [39] according to the corresponding models detailed in
Section IV-B on the top of the real measurement data described
in Section IV-A. Unless otherwise stated, the fault absolute
level b (with unbiased random positive and negative faults) and
noise variance c are assumed uniformly distributed between
0.2 and 0.4 to represent weak fault signals. The fault length
(M and K) is also assumed uniformly distributed between
3 and 11 consecutive samples to represent transient faults.4

It is worth stressing that the uniform distribution choice for
the fault level b (resp. the noise variance c) and the fault
length (M and K) helps the classifier to generalize better

3We implement the proposed architecture and other baselines using Keras
Python API running on TensorFlow version 2.9.2 on MacBook pro M1 CPU
2.1–3.2 GHz with 16-GB memory.

4Under freeze fault, the fault length (M) is uniformly distributed between
100 and 400 consecutive samples due to smooth oscillating (WSN and PMSM)
datasets. Smaller fault lengths cause negligible faults on the working datasets.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

DARVISHI et al.: MACHINE-LEARNING ARCHITECTURE FOR SFDIA IN DTs 2531

Fig. 6. Training and validation loss of the classifier during the training
phase under bias fault. (a) Weighted loss. (b) Per-sensor loss.

without focusing on a specific fault level/length [37], [39].
To verify the robustness of the proposed architecture against
simultaneous faults, up to three concurrent faulty sensors were
considered for the (fault-)generation process.

4) Training Phase of Classifier Block: Fig. 6 shows the
evolution of the classifier loss function versus number of
epochs (during the training phase) on both training (solid
lines) and validation (dashed lines) sets, under bias faults.
Indeed, validation and training losses under other fault types
resemble those shown under bias fault and are thus omitted for
brevity. For completeness, both the weighted (multitask) BCE
[see (11)] and the per-sensor BCE [see (12)] are reported in
Fig. 6(a) and (b), respectively. As evident from the curves, the
training phase on the WSN dataset stops after ≈260 epochs
(“�” marker) by early stopping mechanism as the validation
loss stops decreasing. Conversely, the training phase on the
other two datasets stops after reaching the maximum number
(400) of epochs.

B. Considered Baselines
Results of the proposed approach in terms of detection,

identification, and accommodation performance are compared
with two state-of-the-art architectures: 1) M-SFDIA [41] and
2) AE [12].

Similar to the proposed method, our previous M-SFDIA
proposal is able to detect and isolate faulty sensors from
patterns within the input residual signals. However, solely,
a bank of estimators is used to derive the residual signals and
to accommodate unreliable sensors in the M-SFDIA method.
In addition, the controller block is absent in M-SFDIA.
Furthermore, the original M-SFDIA’s decision logic was
designed to detect, isolate, and accommodate only up to one
faulty sensor. For this reason and the sake of a fair comparison,
the same decision logic as the proposed method was used

(see Section II-D) to enable the M-SFDIA method to detect,
isolate, and accommodate multiple sensors simultaneously.

Conversely, the AE-based architecture devised in [12] is
based on a two-stage approach. Specifically, the first stage
is represented by a (standard) AE to learn data correlations
among sensors and detect anomalies (i.e., faults) by tracking
the mse between the input and output of the AE. As for the
accommodation task, a second stage based on a (supervised)
denoising AE is then used to clean faulty data. It is worth
noticing that the identification task for AE architecture was
not addressed in the original work [12]. Indeed, in the
aforementioned AE-based method, the overall mse of input
and output (reconstructed) vector of the first AE is compared
to a predefined threshold for fault detection only. As opposed
to the aforementioned decision logic, here (for the sake of a
fair comparison), the squared error between the corresponding
input and the output for each entry (i.e., unreliable sensor)
is traced. Then, this error is compared with a predefined
threshold σ , enabling the AE method to both detect and
identify the faulty sensors.5 Specifically, similar to the
proposed method, maxNU

s=1 eAE,s [n] ≷ σ is used for detection,
where eAE,s[n] is the squared error for the sth unreliable
sensor. Accordingly, for the identification task, the set of
identified faulty sensors is obtained as IU � {s ∈ SU :
eAE,s[n] > σ }.

C. Performance Analysis and Comparison
Fig. 7 shows fault detection performance in terms of

probability of detection versus probability of false alarm, i.e.,
showing the receiver operating characteristic (ROC) curves.
In this case, a fault rate6 FR = 0.1 is considered. Also, the
ROC performance is reported separately for each of the three
datasets and all four fault typologies considered. It is evident
that the proposed architecture outperforms the two baselines
for all four fault types. Specifically, the best detection rate
is attained on the AQ dataset when bias faults are present.
Also, for all architectures, detection accuracy under bias faults
appears to be generally higher than the other types of faults.
Moreover, as can be seen, AE architecture fails to detect freeze
faults on the WSN dataset. Indeed, drift and freeze faults are
“trickier” to detect since they slowly appear in the system and
have a less-appreciable effect on spatiotemporal correlations
within the system.

Delving into real-time performance of SFDIA architectures,
in Table III, a detection delay analysis7 for fixed false-alarm
rate of 10−2 is reported. Specifically, the expected detection
delay is evaluated, defined as the average number of samples
needed by an SFDIA architecture to detect a faulty sensor.
The latter delay is indeed another important indicator of the
SFDIA framework performance, which has a crucial effect on

5Numerical results (not shown for brevity) based on the original detection
logic as [12], namely

∑NU
s=1 eAE,s [n] ≷ σ (and a matched identification logic,

i.e., IU � {s ∈ SU : eAE,s [n] > σ/NU }) highlighted worse performance than
the considered variant, due to the inability to cope with weak (and transient)
faults.

6Fault rate refers to the ratio between the number of faulty and nonfaulty
samples.

7Every span of simultaneous faults is considered as a unified fault.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

2532 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

TABLE II
CONFIGURATION OF THE PROPOSED ARCHITECTURE

TABLE III
DETECTION DELAY ANALYSIS. RESULTS REFER TO BIAS AND DRIFT

FAULTS AND ARE IN THE FORMAT AVG. (±STD.) DELAYED

SAMPLES OBTAINED FOR A FAULT RATE FR = 0.5

DTs functionality. In the experiments, the fault rate is set to
FR = 0.5 to generate a sufficient number of fault events
allowing to obtain a reliable estimate of the aforementioned
metric. Results highlight that the proposed architecture
achieves the lowest detection delay in comparison to the
state of the art for all datasets and fault types considered.
Specifically, the average detection delay for the proposed
architecture is confined below 1 sample (except for the
AQ dataset with drift fault types), whereas the other
two architectures always require a longer span to detect
fault(s) within the system. The most evident performance
difference is observed on the PMSM dataset for drift
faults (boldface in Table III). Indeed, in the latter case, the
proposed architecture detects weak faults on average after
0.67 samples, while MSFDIA and AE architectures take on
average 3.40 and 8.30 samples to detect the same faults,
respectively. The reported difference corresponds to a faster
detection for our proposal of more than 5× and 12× than
the MSFDIA and AE architectures, respectively. The reduced
detection delay of the proposed architecture is mainly due
to the joint exploitation of estimation and prediction blocks
(cf. Section II-B), as they provide complementary (residual)
information for the classifier.

Fig. 8 shows the identification performance from the indi-
vidual sensor perspective for the proposed architecture under
different fault types. The probability of identification refers to
the probability that the SFDIA architecture correctly isolates
the corresponding faulty sensor(s), where the average value

is the average probability of identification over all unreliable
sensors in each dataset. Apparently, different sensors undergo
different performances, mostly depending on the level of
spatiotemporal correlation (implicitly) providing the available
redundant information within the system. The corresponding
sensor-averaged identification performance (under the same
fault rate) is shown in Fig. 9. Here, in Figs. 8 and 9, the
proposed architecture performs even better over other methods
since it manages to reduce fault propagation within the
architecture itself and avoid functionality degradation using the
controlling block. Replacing faulty sensors with their estimates
or predictions by the controller provides the classifier with
easier interpretative residual signals.

The accommodation performance in terms of root-mean-
square error (RMSE) is shown in Fig. 10, where fault rates
FR ∈ {0.1, 0.5} are considered. Here, the term error means
the difference between sensor healthy values before adding
the fault and the accommodated values provided by the
SFDIA architecture (or the original values, in the case of
an undetected/unidentified fault). First, it is apparent that the
proposed architecture outperforms the M-SFDIA architecture
by presenting more accurate replacements for faulty data. The
reason is that the proposed architecture relies on a combined
estimator/predictor pair for each sensor and a controller block
to continuously improve the accommodation performance by
modifying their inputs based on the decision vector obtained
from the classifier in a closed-loop fashion. Conversely, the
M-SFDIA architecture does not take advantage of these
excessive data. Finally, the proposed architecture outperforms
AE-based SFDIA on all the three available datasets (except
for PMSM-Noise), with the higher improvement (i.e., RMSE
reduction) in the case of WSN dataset.

The rest of analysis specifically focuses on bias and
drift faults as they well represent sudden (hard) faults and
slowly appearing (soft) faults, respectively. The impact of
different fault rates on the detection and (averaged) isolation
performance is assessed in Figs. 11 and 12, respectively.
In the above cases, two relevant false-alarm probability values
are considered, namely, Pf = 10−1 and Pf = 10−2.
As expected, both detection and identification results reveal
that higher fault rates have a negative impact on the
architecture overall performance, as well as the considered

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

DARVISHI et al.: MACHINE-LEARNING ARCHITECTURE FOR SFDIA IN DTs 2533

Fig. 7. Detection performance in terms of ROC curves for all
architectures over different fault types. (a) Bias fault. (b) Drift fault.
(c) Noise fault. (d) Freeze fault.

baselines. Still, while the proposed architecture is capable to
preserve its detection and isolation performance by incurring
a milder detection/identification loss, both AE and M-SFDIA
architectures exhibit a higher degradation with the fault
rate. This outcome is mostly due to the estimators and
predictors limiting the impact of fault propagation within the
proposed architecture. For instance, referring to the PMSM
dataset, drift faults, and Pf = 10−2, a (harsh) fault-rate

Fig. 8. Identification (isolation) performance in terms of ROC curves for
the proposed architecture over different fault types. Sensor numbers refer
to sensor indices. (a) Bias fault. (b) Drift fault. (c) Noise fault. (d) Freeze
fault.

condition equal to 0.3 leads to a detection probability ≈0.4
(resp. ≈ 0.7) for AE (resp. M-SFDIA). This corresponds to
a 30% (resp. 10%) decrement with respect to a fault-rate
scenario equal to 0.1. On the contrary, our architecture attains
a detection probability ≈ 0.85 in the same harsh condition,
with a corresponding degradation (with respect to fault rate
equal 0.1) equal to 0.05.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

2534 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

Fig. 9. Averaged identification (isolation) performance in terms of ROC
curves for all architectures over different fault types. (a) Bias fault. (b) Drift
fault. (c) Noise fault. (d) Freeze fault.

Figs. 13 and 14 compare the performance trend of different
architectures under versus the fault level b. Clearly, detection
and isolation performance for all architectures under strong
faults are higher than the case of weaker faults. However,
this in turn motivates the importance of developing techniques
suited for weak faults. Results demonstrate a clear advantage
of the proposed architecture over other architectures for
different fault levels, with performance improvement being

Fig. 10. Comparison of accommodation performance in terms of RMSE
(Pf = 10−2).

Fig. 11. Impact of different fault rates on the detection accuracy. (a) Bias
fault. (b) Drift fault.

extremely evident under weak faults. For instance, referring
to the case of bias faults with b = 0.2 on the PMSM
dataset and assuming Pf = 10−2, the proposed architecture
achieves correct-identification probability of 0.9, while the
AE architecture is below 0.1. The AE architecture mostly
exploits change detection in the correlation structure of the
signals and weak faults might have a negligible impact from
this perspective. Conversely, the combined use of estimators,
predictors, and residual processing employed by the proposed

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

DARVISHI et al.: MACHINE-LEARNING ARCHITECTURE FOR SFDIA IN DTs 2535

Fig. 12. Impact of different fault rates on the averaged identification
accuracy. (a) Bias fault. (b) Drift fault.

architecture is able to detect and isolate these “low-observable”
faults. Moreover, as the fault level increases, the proposed
architecture is overtaking the M-SFDIA architecture since the
proposed method mitigates propagation of strong faults within
the architecture by means of the controller block.

To deepen the investigation of the controller block, a
sensitivity analysis was also performed, focusing on detection
and identification performance of the proposed architecture,
by varying the threshold υ during the test phase. More
specifically, Fig. 15 shows the detection and identification
performance of the proposed method with respect to the
threshold υ. To better apprehend the impact of the threshold υ,
the detection and identification performance of the state-
of-the-art counterparts were reported as a lower bound.
Results highlight quite smooth performance trends on the
three datasets with respect to the threshold υ. Interestingly,
predefined threshold υ = 0.9 based on the validation set is
pretty near to the optimum value on the test set.

Finally, to have a fine-grained view of the three architectures
for detection and isolation tasks, Fig. 16 reports their decision
outcomes for a time-segment long 50 samples taken from the
PMSM dataset under bias fault (Pf = 10−2). Specifically,
for each time index n, “◦” symbol denotes the actual (true)
faulty sensors, whereas “None” is used in the case of a healthy
system. Then, for each architecture, the miss-detected faults
(denoted with red “∗” symbol) and the false alarms (i.e.,
sensors erroneously declared as faulty by the architecture
when the system is healthy, with blue “×” symbol) are
highlighted. Finally, when each SFDIA architecture declares
a detection, the corresponding identified faults are reported

Fig. 13. Impact of different fault levels (b) on the detection accuracy.
(a) Bias fault. (b) Drift fault.

Fig. 14. Impact of different fault levels (b) on the averaged identification
accuracy. (a) Bias fault. (b) Drift fault.

with a green “+” symbol. The most eminent point in Fig. 16
is that, by resorting to the proposed architecture, only one fault
remained undetected, whereas M-SFDIA and AE architectures
miss-detected 13 and 16 out of 24 faulty samples, respectively.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

2536 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

Fig. 15. Impact of threshold (υ) on the detection and identification
accuracy (Pf = 10−2). Threshold υ = 1 associated with a zero effect
of the controller (i.e., OFF-circuit controller). (a) Detection sensitivity.
(b) Identification sensitivity.

Fig. 16. Visualization of fault classification for all architectures on the
PMSM dataset.

As mentioned earlier, the proposed architecture attains better
prompt detection and identification performance with respect
to its counterparts. For instance, according to Fig. 16, the
latter two architectures were only capable to identify only
one faulty sensor for the given snapshot when simultaneous
faults occurred, while the proposed architecture successfully
identified most of them.

D. Complexity Analysis
As the final stage of the numerical comparison, the proposed

approach is compared with the considered baselines in terms

TABLE IV
NUMBER OF NNS’ TRAINABLE PARAMETERS

of the relevant computational complexity involved, by looking
at both the training and operational (testing) phases.

Regarding the training phase, the number of trainable
parameters associated with each architecture is summarized
in Table IV. Trainable parameters refer to weights and biases
of each NN to be learned during the training phase (through
stochastic gradient descent by resorting to the backpropagation
technique) in the architecture. Clearly, the number of trainable
parameters grows with the complexity of the (sensor) system to
be accommodated, with the higher complexity associated with
AQ dataset on all three architectures. Also, the information
in the table highlights that the proposed architecture has a
comparable complexity with M-SFDIA while enjoying shorter
training times than the considered AE. Furthermore, due to
the modularity granted by the proposed approach, different
blocks of the considered architecture (e.g., estimators and
predictors) could be trained in a parallel fashion on distributed
(e.g., cloud) architectures.

Regarding the testing phase, the assumption of an equal
number of hidden layers (Hv = Hc = HJ), time delays
(Lv = L p = Lc = L J), and nodes per hidden layer
(Nv = Nc = NJ) is made, as considered in [41], where
index J refers to the joint value. In addition, the impact
of the activation functions is neglected (for simplicity).
Accordingly, the computational complexity of the operational
phase is analyzed in terms of the well-known big-O (Landau’s)
notation. First, it is worth recalling that the computational
complexity of M-SFDIA approximately equals O(L J N2

U NJ +
L J NR NU NJ + HJ NU N2

J) for one input sample [41]. Further-
more, the complexity cost of each predictor in the proposed
architecture is approximately O(L J NJ). Accordingly, the
overall computational complexity of the proposed architecture
approximately equals the M-SFDIA architecture. Indeed, the
complexity is mainly dominated by the computational cost of
the estimators and of the classifier, which is almost equal in
both architectures [41]. Indeed, the impact of the residual and
controller block operations is negligible in the overall cost.

For example, for the AQ dataset, the computational
complexity for estimators’ block is O(3510), the computa-
tional complexity for the classifier block8 is O(1740), and
the computational complexity for the predictors’ block is
O(550). This results in a total computational complexity
of O(5×103) and O(6×103) for M-SFDIA and the proposed

8The computational complexity for the classifier in M-SFDIA architecture
is O(990).

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

DARVISHI et al.: MACHINE-LEARNING ARCHITECTURE FOR SFDIA IN DTs 2537

architecture, respectively. Still, the proposed architecture
attains substantially higher overall SFDIA performance at the
expense of a manageably higher complexity (see Section V-C).

Conversely, for AE-based architecture (which is made of
two similar AEs with a threefold compression factor [12]),
the computational complexity is O((452/81) · (L J · (NU +
NR))2). Accordingly, in the peculiar case of AQ dataset, the
computational complexity of the aforementioned architecture
is approximately O((452/81) · (10 · (5 + 2))2) ≈ O(3 × 104)
for one input sample. As a result, the complexity of the
AE-based architecture appears to be considerably higher than
that incurred by the proposed approach.

VI. CONCLUSION

This article presented a four-layer architecture for SFDIA
based on MLP NNs. Our contribution represents a stepping
stone toward the development of (modular) DTs based on
sensor systems/networks in the IoT contexts. The (four)
designed layers consist of estimation&prediction, residual,
classification, and controlling blocks. The classifier block at
the heart of the architecture is in charge of detecting and
identifying faulty sensors based on residual signals provided
by estimators and predictors. Moreover, a controlling block
is placed to track the classifier’s decision output in order to
boost the overall system performance. This is accomplished by
stopping fault propagation chain at the first layer by modifying
estimators and predictors inputs with respect to the classifier’s
decision.

The proposed method was trained and tested on three real-
world and publicly available datasets (i.e., [41], [42], [50]) for
the sake of a complete and reproducible assessment. For the
sake of generalization, four types of faults were considered
in this study: bias, drift, noise, and freeze. The proposed
architecture yielded notably higher detection and isolation
performance compared to the state-of-art M-SFDIA [41] and
AE [12] architectures, for all four fault types. Moreover, the
proposed architecture was shown to enjoy robustness against
different fault rates, while other architectures’ performances
were affected considerably.

Future works will focus on: 1) the study of DTs for sensors
operating under channel uncertainty; 2) the design of SFDIA
architectures that scale well with the number of sensors;
3) the investigation of reinforcement-learning algorithms
for optimized controller design; and 4) the application of
explainable artificial-intelligence algorithms’ in interpreting
(and improving) the proposed SFDIA approach. Finally, more
sophisticated NN approaches (e.g., convolutional NNs and
RNNs) for each SFDIA module will also be investigated
with the intent of improving detection, identification, and
accommodation performance under specific circumstances
while meeting the operational deployment constraints.

REFERENCES

[1] A. Rasheed, O. San, and T. Kvamsdal, “Digital twin: Values, challenges
and enablers from a modeling perspective,” IEEE Access, vol. 8,
pp. 21980–22012, 2020.

[2] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, “A survey of recent
advances in edge-computing-powered artificial intelligence of things,”
IEEE Internet Things J., vol. 8, no. 18, pp. 13849–13875, Sep. 2021.

[3] L. Chettri and R. Bera, “A comprehensive survey on Internet of Things
(IoT) toward 5G wireless systems,” IEEE Internet Things J., vol. 7,
no. 1, pp. 16–32, Jan. 2020.

[4] S. Cui, F. Farha, H. Ning, Z. Zhou, F. Shi, and M. Daneshmand,
“A survey on the bottleneck between applications exploding and user
requirements in IoT,” IEEE Internet Things J., vol. 9, no. 1, pp. 261–273,
Jan. 2022.

[5] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin in industry: State-
of-the-art,” IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2405–2415,
Apr. 2018.

[6] J. Zhang, L. Li, G. Lin, D. Fang, Y. Tai, and J. Huang, “Cyber
resilience in healthcare digital twin on lung cancer,” IEEE Access, vol. 8,
pp. 201900–201913, 2020.

[7] A. Francisco, N. Mohammadi, and J. E. Taylor, “Smart city digital
twin–enabled energy management: Toward real-time urban building
energy benchmarking,” J. Manage. Eng., vol. 36, no. 2, Mar. 2020,
Art. no. 04019045.

[8] N. Mohammadi and J. E. Taylor, “Smart city digital twins,” in Proc.
IEEE Symp. Ser. Comput. Intell. (SSCI), Nov. 2017, pp. 1–5.

[9] A. Mahapatro and P. M. Khilar, “Fault diagnosis in wireless sensor
networks: A survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 4,
pp. 2000–2026, 4th Quart., 2013.

[10] Z. Yang, N. Meratnia, and P. Havinga, “An online outlier detection
technique for wireless sensor networks using unsupervised quarter-
sphere support vector machine,” in Proc. Int. Conf. Intell. Sensors,
Sensor Netw. Inf. Process., Dec. 2008, pp. 151–156.

[11] X. Luo, Y. Li, X. Wang, and X. Guan, “Interval observer-based detection
and localization against false data injection attack in smart grids,” IEEE
Internet Things J., vol. 8, no. 2, pp. 657–671, Jan. 2021.

[12] M. M. N. Aboelwafa, K. G. Seddik, M. H. Eldefrawy, Y. Gadallah,
and M. Gidlund, “A machine-learning-based technique for false data
injection attacks detection in industrial IoT,” IEEE Internet Things J.,
vol. 7, no. 9, pp. 8462–8471, Sep. 2020.

[13] K. Ni et al., “Sensor network data fault types,” ACM Trans. Sensor
Netw., vol. 5, no. 3, pp. 1–29, Jun. 2009.

[14] T. Muhammed and R. A. Shaikh, “An analysis of fault detection
strategies in wireless sensor networks,” J. Netw. Comput. Appl., vol. 78,
pp. 267–287, Jan. 2017.

[15] Y. Jiang, S. Yin, J. Dong, and O. Kaynak, “A review on soft sensors
for monitoring, control, and optimization of industrial processes,” IEEE
Sensors J., vol. 21, no. 11, pp. 12868–12881, Oct. 2020.

[16] M. M. Gharamaleki and S. Babaie, “A new distributed fault detection
method for wireless sensor networks,” IEEE Syst. J., vol. 14, no. 4,
pp. 4883–4890, Dec. 2020.

[17] E. Dubrova, “Hardware redundancy,” in Fault-Tolerant Design. Cham,
Switzerland: Springer, 2013, pp. 5–86.

[18] A. A. Amin and K. Mahmood-Ul-Hasan, “Advanced fault tolerant air-
fuel ratio control of internal combustion gas engine for sensor and
actuator faults,” IEEE Access, vol. 7, pp. 17634–17643, 2019.

[19] S. Yin, B. Xiao, S. X. Ding, and D. Zhou, “A review on recent
development of spacecraft attitude fault tolerant control system,” IEEE
Trans. Ind. Electron., vol. 63, no. 5, pp. 3311–3320, May 2016.

[20] P. M. Papadopoulos, L. Hadjidemetriou, E. Kyriakides, and
M. M. Polycarpou, “Robust fault detection, isolation, and
accommodation of current sensors in grid side converters,” IEEE
Trans. Ind. Appl., vol. 53, no. 3, pp. 2852–2861, May 2017.

[21] J. Loy-Benitez, Q. Li, K. Nam, and C. Yoo, “Sustainable subway indoor
air quality monitoring and fault-tolerant ventilation control using a sparse
autoencoder-driven sensor self-validation,” Sustain. Cities Soc., vol. 52,
Jan. 2020, Art. no. 101847.

[22] G. Campa, M. Thiagarajan, M. Krishnamurty, M. R. Napolitano, and
M. Gautam, “A neural network based sensor validation scheme for
heavy-duty diesel engines,” J. Dyn. Syst., Meas., Control, vol. 130, no. 2,
pp. 1–10, Mar. 2008.

[23] M. Ruba, R. O. Nemes, S. M. Ciornei, and C. Martis, “Simple and robust
current sensor fault detection and compensation method for 3-phase
inverters,” IEEE Access, vol. 8, pp. 34820–34832, 2020.

[24] S. K. Kommuri, S. B. Lee, and K. C. Veluvolu, “Robust sensors-fault-
tolerance with sliding mode estimation and control for PMSM drives,”
IEEE/ASME Trans. Mechatronics, vol. 23, no. 1, pp. 17–28, Feb. 2018.

[25] C. Sun and Y. Lin, “Adaptive output feedback compensation for a class
of nonlinear systems with actuator and sensor failures,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 52, no. 8, pp. 4762–4771, Aug. 2021.

[26] J. Zhang, S. Li, and Z. Xiang, “Adaptive fuzzy output feedback event-
triggered control for a class of switched nonlinear systems with sensor
failures,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12,
pp. 5336–5346, Mar. 2020.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

2538 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

[27] C. Lo, J. P. Lynch, and M. Liu, “Distributed reference-free fault detection
method for autonomous wireless sensor networks,” IEEE Sensors J.,
vol. 13, no. 5, pp. 2009–2019, May 2013.

[28] P. Liu, Y. Zhang, H. Wu, and T. Fu, “Optimization of edge-PLC-based
fault diagnosis with random forest in industrial Internet of Things,” IEEE
Internet Things J., vol. 7, no. 10, pp. 9664–9674, Oct. 2020.

[29] S. Zidi, T. Moulahi, and B. Alaya, “Fault detection in wireless sensor
networks through SVM classifier,” IEEE Sensors J., vol. 18, no. 1,
pp. 340–347, Jan. 2018.

[30] G Su, D. Fang, S. Jian, and L. Fengmei, “Sensor fault detection with
online sparse least squares support vector machine,” in Proc. 32nd Chin.
Control Conf., 2013, pp. 6220–6224.

[31] S. Mandal, B. Santhi, S. Sridhar, K. Vinolia, and P. Swaminathan,
“Nuclear power plant thermocouple sensor-fault detection and classi-
fication using deep learning and generalized likelihood ratio test,” IEEE
Trans. Nucl. Sci., vol. 64, no. 6, pp. 1526–1534, Jun. 2017.

[32] H. Darvishi, D. Ciuonzo, E. R. Eide, and P. S. Rossi, “A data-driven
architecture for sensor validation based on neural networks,” in Proc.
IEEE SENSORS, Oct. 2020, pp. 1–4.

[33] J. Gao, J. Wang, P. Zhong, and H. Wang, “On threshold-free error
detection for industrial wireless sensor networks,” IEEE Trans. Ind.
Informat., vol. 14, no. 5, pp. 2199–2209, May 2018.

[34] K. Jeong, S. B. Choi, and H. Choi, “Sensor fault detection and isolation
using a support vector machine for vehicle suspension systems,” IEEE
Trans. Veh. Technol., vol. 69, no. 4, pp. 3852–3863, Apr. 2020.

[35] H. Zhao, “Neural component analysis for fault detection,” Chemometric
Intell. Lab. Syst., vol. 176, pp. 11–21, May 2018.

[36] M. Elnour, N. Meskin, and M. Al-Naemi, “Sensor data validation
and fault diagnosis using auto-associative neural network for HVAC
systems,” J. Building Eng., vol. 27, Jan. 2020, Art. no. 100935.

[37] S. Hussain, M. Mokhtar, and J. M. Howe, “Sensor failure detection,
identification, and accommodation using fully connected cascade neural
network,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1683–1692,
Oct. 2015.

[38] F. Balzano, M. L. Fravolini, M. R. Napolitano, S. d’Urso, M. Crispoltoni,
and G. del Core, “Air data sensor fault detection with an augmented
floating limiter,” Int. J. Aerosp. Eng., vol. 2018, pp. 1–16, Nov. 2018.

[39] D. Haldimann, M. Guerriero, Y. Maret, N. Bonavita, G. Ciarlo, and
M. Sabbadin, “A scalable algorithm for identifying multiple-sensor
faults using disentangled RNNs,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 3, pp. 1093–1106, Mar. 2020.

[40] H. B. Zhang, Q. Zhang, J. J. Liu, and H. Z. Guo, “Fault detection and
repairing for intelligent connected vehicles based on dynamic Bayesian
network model,” IEEE Internet Things J., vol. 5, no. 4, pp. 2431–2440,
Aug. 2018.

[41] H. Darvishi, D. Ciuonzo, E. R. Eide, and P. S. Rossi, “Sensor-
fault detection, isolation and accommodation for digital twins via
modular data-driven architecture,” IEEE Sensors J., vol. 21, no. 4,
pp. 4827–4838, Feb. 2021.

[42] S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. D. Francia,
“On field calibration of an electronic nose for benzene estimation in
an urban pollution monitoring scenario,” Sens. Actuators B, Chem.,
vol. 129, no. 2, pp. 750–757, 2008.

[43] S. Suthaharan, M. Alzahrani, S. Rajasegarar, C. Leckie, and
M. Palaniswami, “Labelled data collection for anomaly detection in
wireless sensor networks,” in Proc. 6th Int. Conf. Intell. Sensors, Sensor
Netw. Inf. Process., Dec. 2010, pp. 269–274.

[44] W. Kirchgassner, O. Wallscheid, and J. Böcker, “Deep residual
convolutional and recurrent neural networks for temperature estimation
in permanent magnet synchronous motors,” in Proc. IEEE Int. Electric
Mach. Drives Conf. (IEMDC), May 2019, pp. 1439–1446.

[45] H. Darvishi, D. Ciuonzo, and P. S. Rossi, “Real-time sensor fault
detection, isolation and accommodation for industrial digital twins,” in
Proc. IEEE Int. Conf. Netw., Sens. Control (ICNSC), Dec. 2021, pp. 1–6.

[46] P. Tchakoua, R. Wamkeue, M. Ouhrouche, F. Slaoui-Hasnaoui,
T. A. Tameghe, and G. Ekemb, “Wind turbine condition monitoring:
State-of-the-art review, new trends, and future challenges,” Energies,
vol. 7, no. 4, pp. 1–36, Apr. 2014.

[47] F. Rosenblatt, The Perceptron: A Theory of Statistical Separability
in Cognitive Systems (Project Para). Buffalo, NY, USA: Cornell
Aeronautical Laboratory, 1958.

[48] C. M. Bishop et al., Neural Networks for Pattern Recognition. Oxford,
U.K.: Oxford Univ. Press, 1995.

[49] T. Dozat, “Incorporating Nesterov momentum into Adam,” in Proc. Int.
Conf. Learn. Represent. (ICLR), 2016, pp. 1–4.

[50] W. Kirchgassner, O. Wallscheid, and J. Böcker, “Empirical evaluation
of exponentially weighted moving averages for simple linear thermal
modeling of permanent magnet synchronous machines,” in Proc. IEEE
28th Int. Symp. Ind. Electron. (ISIE), Jun. 2019, pp. 318–323.

[51] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

Hossein Darvishi (Graduate Student Member,
IEEE) received the B.Sc. degree from the
Kermanshah University of Technology,
Kermanshah, Iran, in 2016, and the M.Sc.
(Hons.) degree in telecommunications
engineering from the K. N. Toosi University of
Technology, Tehran, Iran, in 2018. He is currently
pursuing the Ph.D. degree in electronics and
telecommunications with the Department of
Electronic Systems, Norwegian University of
Science and Technology (NTNU), Trondheim,

Norway.
He is currently a Visiting Researcher with the Signal Processing

Laboratory (LTS4), Electrical Engineering Institute, Swiss Federal
Institute of Technology (EPFL), Lausanne, Switzerland. He is also with
the Nordic Industrial IoT Hub (HI2OT) and the SIGNIFY project (NTNU
and SINTEF’s research and connectivity program in sensor validation
solutions for digital twins of safety-critical systems). His research
interests include statistical signal processing, machine learning, the
Internet of Things, and wireless sensor networks.

Mr. Darvishi is a Reviewer for reputable journals, including IEEE
TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS and
IEEE SENSORS JOURNAL.

Domenico Ciuonzo (Senior Member, IEEE)
received the Ph.D. degree from the University of
Campania “L. Vanvitelli,” Caserta, Italy, in 2013.

He is an Assistant Professor with the University
of Naples “Federico II,” Naples, Italy. Since 2011,
he has been holding several visiting researcher
appointments. His research interests include
data fusion, statistical signal processing, wireless
sensor networks, the Internet of Things, and
machine learning.

Dr. Ciuonzo was a recipient of two Best Paper
Awards from IEEE ICCCS in 2019 and Computer Networks (Elsevier)
in 2020, the 2019 Exceptional Service Award from IEEE AESS,
the 2020 Early-Career Technical Achievement Award from IEEE Sensors
Council for sensor networks/systems, and the 2021 Early-Career Award
from IEEE AESS for contributions to decentralized inference and sensor
fusion in networked sensor systems. He is currently a Technical Editor
of the IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS and an
Executive Editor of the IEEE COMMUNICATIONS LETTERS.

Pierluigi Salvo Rossi (Senior Member, IEEE)
was born in Naples, Italy, in 1977. He received the
Dr.Eng. (summa cum laude) degree in telecom-
munications engineering and the Ph.D. degree
in computer engineering from the University of
Naples “Federico II,” Naples, Italy, in 2002 and
2005, respectively.

He is currently a Full Professor and the Deputy
Head of the Department of Electronic Systems,
Norwegian University of Science and Technology
(NTNU), Trondheim, Norway. He is also a part-

time Research Scientist with the Department of Gas Technology, SINTEF
Energy Research, Trondheim, Norway. Previously, he worked with the
University of Naples “Federico II”; the Second University of Naples,
Naples; NTNU; and Kongsberg Digital AS, Horten, Norway. He held
visiting appointments with Drexel University, Philadelphia, PA, USA; Lund
University, Lund, Sweden; NTNU; and Uppsala University, Uppsala,
Sweden. His research interests fall within the areas of communication
theory, data fusion, machine learning, and signal processing.

Prof. Salvo Rossi was awarded as an Exemplary Senior Editor of the
IEEE COMMUNICATIONS LETTERS in 2018. He is (or has been) on the Editorial
Board of the IEEE SENSORS JOURNAL, the IEEE OPEN JOURNAL OF THE

COMMUNICATIONS SOCIETY, the IEEE TRANSACTIONS ON SIGNAL AND INFORMATION

PROCESSING OVER NETWORKS, the IEEE COMMUNICATIONS LETTERS, and the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2023 at 16:14:29 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

